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a b s t r a c t

A quantitative model describing the process of turbulent diffusion of the liquid mass of a chemical spill as
it moves with the river current is constructed. The model contains a representation of the tensor compo-
nents of the turbulent diffusion coefficients in terms of the initial parameters of the problem – the breadth
and depth of the water flow in the river and the average flow velocity. According to the model proposed,
the process consists of three stages: the initial, rapid stage, in which, owing to turbulent diffusion along
the vertical coordinate, the pollutant concentration distribution evens out along this coordinate; the
intermediate stage, in which, because of turbulent diffusion along the horizontal coordinates, the con-
centrations are likewise evened out along the horizontal coordinate transverse to the river channel; and
the third, longest and slowest stage, in which quasi-one-dimensional turbulent diffusion occurs along
the longitudinal (channel) coordinate, describing the “spreading” of the chemical slick (volume) carried
downstream. Simple explicit formulae are obtained for a quantitative estimation of the characteristic
pollutant concentrations at the end of the first and second stages and their “attenuation” with increasing
distance as the chemical slick drifts with the current, and also the increasing longitudinal dimension of
the slick with distance downstream.

© 2010 Elsevier Ltd. All rights reserved.

The industrial development of civilisation on Earth has been beset with a host of technogenic accidents, occasionally catastrophic,
including the discharge into rivers of toxic chemicals that are dangerous to living creatures. A typical example is the recent accident at a
chemical factory in the Chinese town of Jilin, as a result of which about 100 m3 of polluted liquid was spilt into the Songhua River– the
largest tributary of the Amur River.

Carried along by the river current, the polluted liquid mass is gradually mixed, by turbulent transfer, with the river water and diluted
by it, and the concentration of toxic chemicals decreases.

It is of considerable ecological interest to forecast the changes to the pollutant – the changes in its concentration in an increasing
volume of polluted water – as it flows downstream. The results of a quantitative estimation of these changes determine the decisions
taken concerning the different technical and organizational measures to protect the population of towns and cities and other settlements
downstream of the spill that require river water for drinking and other needs.

A detailed forecast is possible only by constructing a mathematical model of the process of drift of the polluted volume of water with
the current, its mixing with the river water and its “spread” in size, with a resultant fall, with time and along spatial coordinates, in
the concentrations of polluting impurities. Such a model will be constructed in the present paper, and estimates will be made for the
Songhua–Amur incident.

The water current in rivers is turbulent – against a background of low average flow velocities (in large lowland rivers), because of the
gradients of these flow velocities in the vertical and horizontal directions, different-scale turbulent motions of the water arise, and this
generates the relative transfer of individual water masses in the directions indicated and their mixing with the surrounding masses of
water, and turbulent diffusion of impurities contained in the water occurs. A quantitative description of these processes is a very complex
problem: both the turbulent current and the transfer and mixing of impurities that occur because of it are very non-linear processes for
which there are no precise mathematical models. Approximate models exist, based on different hypotheses concerning the “structure” of
the turbulence, the adequacy of which is “adjusted” in specific situations by comparisons with given observations. Some idea of the state
of the art in these matters can be gleaned elsewhere.1–4
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To describe turbulent diffusion, the molecular diffusion coefficient in the normal diffusion equation is replaced by the tensor of the
turbulent diffusion coefficients, the determination of which requires appropriate hypotheses.

We will use this approach. Then, for the case of a “preserved” pollutant, when it is not “removed” from the water mass by processes
of adsorption on the surface of the river bed or by chemical and biochemical interactions with the water, leading to the formation of
substances sinking or surfacing in the water, the equation of turbulent diffusion can be written in the form

(1)

where C is the impurity concentration, x = s − Vt, y and z are the spatial coordinates, s along the river bed, y transverse to it in the horizontal
direction and z along the vertical (in spite of the curvilinearity of this coordinate system, because the curvature of the channel axis is
relatively small, the notation of the diffusion equation in form (1) is fairly precise), t is the time, V is the flow rate averaged over the cross-
section of the water flow, � is the average velocity (without turbulent pulsations) along the channel in the x, y, z system (the analogous
rates along the y and z axes are zero), and Kx, Ky and Kz are the coefficients of turbulent diffusion, taken to be constant below. This last
assumption is the most crude; it is used in order to be able to obtain visible estimates of the orders of magnitude of the parameters analysed
in the problem. It is this that makes the diffusion equation (1) linear and enables us to make a complete analysis of the process.

For a “preserved” pollutant not adsorbed by the river bed, river banks or aquatic life, the three-dimensional equation (1) must be solved
under boundary conditions expressing the absence of flows of this substance through boundaries (the bed, the banks and the free surface
of the water).

Similar modelling of turbulent effects has been used in the literature to investigae a number of problems in oceanology (for example,
in the book edited by A. S. Monin5) and gives acceptable results. However, no rational approaches have been used to determine a priori of
the dependence of the turbulent diffusion coefficients on the governing parameters of the problem. This is a very considerable deficiency
of existing studies of this problem. Here, we will represent this dependence by approximate relations and make a quantitative assessment.
We first remark that, generally speaking, the tensor of the turbulent diffusion coefficients does not need to have a diagonal form, as adopted
in the writing of Eq. (1). However, an attempt to determine the values of off-diagonal coefficients Kxy, Kyz and Kxz, to assess the effect of
taking them into account when solving of the problem, is unwarranted because, on the one hand, there is as yet no reliable theory to
support this, and, on the other hand, taking these coefficients into account in reasonable estimates of their orders of magnitude cannot
appreciably alter the forecasts obtained using model (1), whereas doing so will greatly complicate the model itself.

To estimate a priori the dependence of the coefficients Kx, Ky and Kz on the governing parameters of the problem, we will proceed from
the fact that turbulence only arises when there are gradients of the average velocities along the spatial coordinates. In the present problem
there are three characteristic gradients of this kind – along the x, y and z coordinates. The orders of magnitude of these parameters are
estimated from the ratios V/Lx, V/Ly and V/Lz, where Lx, Ly and Lz are the characteristic linear dimensions of the problem. For a river, Ly ∼ D
and Lz ∼ h, where D and h are the characteristic breadth and depth of the water flow. As regards Lx, it can be assumed that the estimate
here will be of the order of Lx ∼ kD, k ∼ 1–6, because diffusion in the x direction will chiefly be determined by the velocity gradient along y
but will be slower than the diffusion transverse to the river (along y).

The dimension of the coefficients Kx, Ky and Kz is a product of the dimensions of the velocity and length, and therefore, assuming that
these coefficients are determined by the magnitudes of V and the above expressions for estimating the gradients, we will have

(2)

where ax, ay and az are dimensionless numerical coefficients of the same order of magnitude. In the general case, these coefficients depend
on the Reynolds numbers, where � is the kinematic viscosity coefficient of the water. However, this dependence becomes weak at the high
values of these numbers that are characteristic of the conditions in large rivers. We will estimate the numerical values of the parameters
ax, ay and az later when comparing the results of theoretical forecasting with real data from observations.

The relations in system (2) indicate that the tensor of the turbulent diffusion coefficients are considerably anisotropic, as h � D (for
large rivers, h is of the order of a few or tens of metres, and D is of the order of hundreds of metres or a few kilometres, i.e., h/D ∼ 10−2).
This means that, in reducing Eq. (1) to dimensionless form by substituting x = Lx�, y = D�, z = h�, t = T� and � = Vu (the quantities �, �, �, �
and u are all of the order of unity), and in estimating the orders of the quantities in this equation, it is reduced with great accuracy, with
T = h/azV, to the form

(3)

with boundary conditions of the absence of flow of the pollutant through the bed and surface of the river. This means that diffusion along z
occurs much more rapidly than along y or x, and so there is a “fast” time in the problem, of scale T = Tz∼h/azV0. It follows that the process of
mixing of the initial polluted liquid volume with the surrounding water will take place in several stages. The initial state – the rapid stage
– is “controlled” by Eq. (3). At this stage, the concentrations of the impurity along the z coordinate are evened out if the densities of the
pure water and of the polluted water, � and �*, are identical, or a different “quasi-equilibrium” concentration distribution along z is formed
if �* /= �, with the maximum concentration at the river bed if �* > � or at the surface of the water if �* < �. If the difference between � and
�* is significant, the impurity will either sink (when �* > �) and move and diffuse very slowly in a thin near-bed layer of water or (when
�* < �) will remain afloat and diffuse in a thin near-surface layer of water. These cases require special quantitative modelling, in particular a
separate analysis of cases where the pollutant may be mixed with (dissolved by) the water or may remain unmixed (for example, when this
pollutant is oil). However, we will not examine these cases in detail here, but rather confine ourselves to the case where �* ∼ �, when the
difference between �* and � has no influence on turbulent diffusion. Here, the condition

∣
∣�∗ − �

∣
∣ gh � 0.5�V2, or

∣
∣�∗ − �

∣
∣/� � �V2/2gh,

will be adhered to. For example, when V = 1 m/s and h = 5 m, the condition
∣
∣�∗ − �

∣
∣/� � 0.01 is obtained.
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At the first stage, which is completed within a time t1 = nTz∼nh/azV, n ∼ 3–5 (within this time, the diffusion “front” n times traverses
the water layer of height h), diffusion occurs, of course, in the x and y directions, and this diffusion front moves a distance of the order of
lx∼

√
Kxt1, ly∼

√
Kyt1, or

so that the following estimates are obtained

i.e., the dimensions of the region along x and y into which the pollutant diffusing along x and y has penetrated are small compared with
the characteristic dimensions of the problem in these directions. The same quasi-equilibrium impurity concentration distributions along
x and y will be different for different x and y – they will depend on x and y as on parameters and change slowly during diffusion along x
and y at the following stages.

At the second stage, the slower stage, quasi-two-dimensional diffusion occurs along y and x, which ends with the concentrations evening
out along the y coordinate. At this stage, the process of diffusion is described by a two-dimensional equation (along x and y) obtained from
Eq. (1) by discarding the final term on the right-hand side, or by averaging Eq. (1) with respect to z (the result is the same). The characteristic
time of completion of this stage is estimated by the expression t2 = nTy∼nD/ayV , n ∼ 3–5 (the diffusion front crosses the width D of the
river n times).

On completion of the second stage, the third stage, the longest, begins. In this stage diffusion of the impurity occures along the x
coordinate, along the river, that is no longer subject to the constricting influence of the boundaries of the water flow. Here, the diffusion
process is again described by a one-dimensional equation obtained from Eq. (1) by averaging over y and z, i.e., over the cross-section of the
flow, which yields, with a good approximation,

(4)

where F is the cross-section area of the flow.
Equation (4) is obtained from Eq. 1 without the term �∂C̄/∂x because � is the deviation of the longitudinal velocity of the water from

its average value V, so that

since

Thus, the process consists of three successive, increasingly long stages in which we can estimate the quantities of interest to us from
three different models. The same stages will arise in the same sequence (with some quantitative differences at the first and second stages)
when a tributary joins a larger river, with sudden changes in the characteristic parameters of the problem, V, D and h, or, conversely, when
a river “takes in” tributaries, likewise with sudden changes in V, D and h. It is not possible, in the fairly rough approach adopted here,
to take into account smoother changes in D and h (and consequently in V), which always occur in reality, and consider V, D and h to be
constant (with respect to s, and therefore with respect to x) on segments of the river between cross-sections where sudden changes in these
parameters occur. To describe the evolution of the process downstream, the estimates made above can be used as the points where sudden
changes in V, D and h occur, taking into account the fact that, at these points, the incoming volume of polluted water is no longer a “point”
volume but, rather, has been formed at preceding stages of the process and has a finite extent along x that may be significant compared
with the parameters D and Lx. However, the process at the third stage after the sudden change in the “initial” data can be analysed by the
scheme given below for the third stage of the process before any sudden changes have taken place.

Before turning to a detailed quantitative description of the process at the third stage, which determines the effects of pollution of the
river water at considerable distances (compared with D and Lx) downstream, we will remark that there is no need to construct detailed
models of turbulent diffusion at the first two stages; for these stages, the orders of magnitude of the quasi-equilibrium concentrations can
be estimated from simple integral relations following from the balance of the mass of “preserved” pollutant.

If the characteristic dimensions of the volume of polluted liquid at the initial instant of time are denoted by Ax0, Ay0 and h0, and the
pollutant concentrations in the liquid by C0, then an approximate relation expressing the above-mentioned balance for the first stage of
the process can be written in the form

(5)

where lx and ly are the increments in the horizontal dimensions Ax0 and Ay0 of the polluted volume, and C1 is the characteristic magnitude
of the pollutant concentration that arise by the end of the first stage. These increments are estimated by the relations already given above

(6)
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and therefore, to assess C1, Eqs (5) and (6) yield

(7)

In this formula, for Lx we can adopt the estimate Lx = Lx1 ≈ Ly = D, since the diffusion along x under conditions where the diffusion front has
yet to traverse the width of the river does not differ significantly from the diffusion along y.

The concentration by the end of the second stage will be estimated as follows. Within a time of the order of t20, determined from the
relation

(8)

the diffusion front will traverse the river width D. Then, within a time of the order of (n − 1)t20, the diffusion front will traverse the river
width (there and back) a further n − 1 times. Within the full time t2 = nt20, along the river the diffusion front will travel a distance

(9)

As a result, in the volume affected by diffusion, with dimensions along x of the order of l, and along y and z of the order of D and h, a
characteristic concentration C2 is established that corresponds to the end of the second stage. Thus, the balance of the mass of the pollutant
for this instant of time will be written in the form

(10)

In formula (9), the parameter Kx will differ (because of Lx) from that for the first stage, as the diffusion along x under conditions where
diffusion transverse to the river has already covered its entire width will differ from the diffusion at the first stage. Therefore, it can be
assumed that, in formula (9), the following relation is acceptable for Kx

(11)

In this way, relations (9) and (10) are reduced to the form

(12)

(13)

Formulae (12) and (13) enable us to estimate the longitudinal dimension of the polluted volume and the characteristic magnitude of
the pollutant concentration within it by the end of the second stage.

When �* = �, it can be assumed that (maxC)1 = C1 and (maxC)2 = C2, whereas, when �* /= �, (maxC)1 = k1C1 and (maxC)2 = k2C2, k1 > 1 and
k2 > 1. The quantities k1 and k2 are defined by the form of the quasi-equilibrium concentration profiles at the end of the first and second
stages and depend on the ratio �*/�.

For a quantitative description of the third stage of the process, we must construct a solution of Eq. (4) with a certain initial concentration
distribution C(x,t2) = C0(x) arising by the end of the second stage and concentrated in an interval of the x axis that has a length defined by
relation (12). For the third stage we can consider the pollutant concentration in be quasi-equilibrium along y and z in all cross-sections of
the current, i.e., homogeneous over the cross-section, and therefore, in Eq. (4) and below, instead of C̄, we can write C.

As the characteristic distances L along the river, for which the evolution of the process in time and along the x coordinate must be
calculated, are considerably greater than this initial length, i.e., L �

√
(ax/ay)knD, the “initial” mass of pollutant can be considered to be

concentrated at a “point”, i.e., Eq. (4) can be solved with the total mass of pollutant m = �*C0Ax0Ay0h0 specified to be constant throughout
the process. However, when formulated in this way, the problem becomes self-similar, and its solution describes well the solution of the
problem for a non-point initial distribution with L � l, which is just what we need for quantitative estimates under the adopted rough
representation of the evolution of turbulent diffusion.

The solution of the self-similar problem has the form

(14)

where A is a constant and the function f(x) is determined by solving the ordinary differential equation (obtained from Eq. 4 with represen-
tation (14))

(15)

provided f′(0) = 0, and has the form

(16)
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As the solution must satisfy the condition of retention of a pollutant mass equal to the initial mass,

(17)

we finally obtain

(18)

In this formula, the time t3 is measured from the end of the second stage, t3 = t − t2, and the formula can be used when t3 � t2, i.e., t can
be written instead of t3; as noted, this is an asymptotic solution worked out from the initial data arising at the end of the second stage
when the polluted volume is quite far from the point where chemical spill into the river occured. Substituting Vt3 = L into Eq. 18 we obtain

(19)

where L is the distance travelled downstream by the “centre” of the polluted volume (where x = 0).
From Eq. (19) we obtain a very simple relation for the law of attenuation of the maximum pollutant concentration with distance

(20)

by which it is possible, having data from measurements at a certain L0, to forecast the maxC values for other L values (further downstream).
It is remarkable that the decrease in concentration (2) does not depend on any of the parameters of the problem!

From Eq. (19) it is also established that the effective length 	 (along the river) of the volume of polluted water changes during its motion
downstream when L � l = 	0 as follows:

(21)

where �* is determined by the adopted range of variation in x (−x* ≤ x ≤ x*) in Eq. (19), taken as 	 = 2x*, say �∗ =
√

2 when exp(−�2
∗ ) ≈ 0.1,

i.e., by the relation

(22)

Relations (21) and (22), like relation (20), can also be compared with data from observations to check the adquacy of the model of the
quantitative process constructed here, and also to forecast the evolution of the parameters of the polluted volume as it drifts downstream.
By comparing formulae (19) and (22) with data from observations, we can also determine the constant ax in formula (11) for the effective
longitudinal coefficient of turbulent diffusion.

We will now compare the results of estimates by the proposed model with data from observations for the incident on the Songhua River
at the end of 2005 and determine the corresponding constants occuring in the model. First of all, we will substitute into relations (2) the
characteristic values of the parameters of the problem for the rivers Amur and Songhua in order to estimate the orders of magnitude of Kx,
Ky and Kz. For the Amur, data can be found in Ref. 6, in particular for the Khabarovsk location, V ∼ 1 m/s, D ∼ 1–2 km, h ∼ 10 m. Therefore,
in estimates of the orders of magnitude of these parameters, with ax ∼ ay ∼ az ∼0.1–1.0, we obtain

The values obtained cover exactly the range of AL values for the turbulent transfer of a pulse that is given in the table on page 386 of
Monin’s book,5 where, apropos of these AL values, it is stated: “The coefficient of horizontal turbulent exchange is unknown in advance,
and it can range from 105 to 108 cm/s”. But nothing is said of how this range was established. Apart from AL, the table contains values of
the length parameter L� , which characterizes a certain internal dimension of the turbulent process. These values range from 8 to 80 km,
corresponding to the range of AL given there, i.e., for an increase in AL by three orders of magnitude there is an increase in L� by one order
of magnitude – AL∼L3

� .
Unfortunately, we have been unable to find the values of V, D, h and the longitudinal dimensions of the river channel between character-

istic points, in particular between Jilin and the point at which the Songhua flows into the Amur. However, we do have detailed hydrological
data for the Amur, kindly gathered, at my request, by Academician M. G. Khublaryan. These data were obtained at a number of locations
in 1955–1958 and contain the values of the breadth, depth and cross-section area of the flow and the average and maximum flow rates of
water as a function of the time of year. It is clear from these data that the flow rate is at its maximum in the summer (at the beginning of
autumn) and falls almost by an order of magnitude at the end of the year and the beginning of the next. The accident in Jilin occurred on
13 November 2005, and the polluted volume evolved against a background of minimal flow rates in the Songhua, in which the variability
of the hydrological conditions, it is natural to assume, are the same as in the Amur. It is known that the flow rate of water in the Songhua
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is a third of that in the Amur at the point where they meet, and therefore, bearing in mind the data for Songhua, we chose one of the
locations of instrumental recording of the hydrological parameters of the Amur with a flow rate of the same order of magnitude. This site
was the village of Pompeyevka, and for it the average values in 1955–1958 to the year end were as follows: h ∼ 3–6 m, D ∼ 450–500 m,
V ∼ 0.2–0.35 m/s, Q ∼ 200–1000 m3/s and F = Dh ∼ 1750–3000 m2.

The maximum values of these parameters relate to 1955, when the river was ice-free, while for the other three years it was frozen over,
and the average data for these years correspond to lower values of the parameters. Therefore, for subsequent calculations, we will adopt
the following average values for the Songhua: h = 4 m, D = 500 m, F = 2000 m2, V = 0.2 m/s and Q = VF = 400 m3/s.

Information was posted on the Internet (1 December 2005) that a chemical slick of 80 km length was approaching the town of
Harbin, 380 km away from Jilin, at the start of December, and that it would soon pass Harbin. If it was assumed that, for the middle
of the chemical slick (where the pollutant was at its highest concentration) to pass through Harbin, it would have to travel 380 km,
and for the entire slick to pass through Harbin a further 0.5 × 80 km, then the time for this to occur, with V = 0.2 m/s, would amount to
t = T = 420 × 103 m/0.2 m/s ≈ 2 × 106 s ≈ 24 days. The maximum concentration would pass through at a time t = T0 = 380 × 103 m/0.2 m/s ≈22
days. Thus, the adopted value of V = 0.2 m/s was in good agreement with estimates by Chinese experts of the time when the chemical slick
would pass through Harbin (on 4, 6 and 8 December 2005). This validates our choice of the Amur at Pompeyevka as an analogue for the
Songhua.

Below, using these data of Chinese experts, we will take 	 = 80 km in formula (21), and also D = 500 m, L = 380 km and �∗ =
√

2, i.e.

we will assume that 80 = 4
√

2axk × 0.5 × 380, from which we obtain axk = 40/38 ≈ 1, and, for the range k ∼ 2–6 adopted above, we obtain
ax ∼ 0.17–0.5. For the average value k = 4, we obtain ax ∼ 0.25. These values for ax lie in the range 0.1–1.0 which, as suggested above, contains
the values of ay and az as well. To estimate these parameters, we will calculate the values of t1, t2 and l, which are defined by the formulae
introduced above

(23)

We will assume, as before, that h = 4 m, V = 0.2 m/s and D = 500 m, and also use the estimate obtained above axk ≈ 1, and for ay ∼ az ∼ 0.1–1.0
we will obtain t1 ∼ (3–5) 4 m/(0.1–1.0) × 0.2 m/s ∼ 60–1000 s ∼ 1–17 min. With n = 4 and az ∼ ax ≈ 0.25, we obtain t1 ≈ 320 s ∼ 5 min. For t2,
similarly we obtain t2 ∼ 140–2400 min ∼ 2 h 20 min–40 h. With n = 4 and ay = 0.25, we obtain t2 ∼ 700 min ∼ 17 h. From these estimates it
follows that, obviously, it is preferable to adopt ay ∼ az ∼ 0.1 and n = 5, and here the durations of the first and second periods amount to
t1 ≈ 17 min and t2 ≈ 40 h.

For l we obtain

With n = 4 and ay = 0.25, we obtain l∼
√

4/0.25 × 500 m = 2000 m. To assess l, it is again preferable to take ay ∼ 0.1 and n = 5, which yields
l ≈ 3.5 km.

One comment must be made here. In deriving the formulae for t1 and t2, the time of single traversal by the diffusion front of dimensions
h and D was simply increased. Another approach is possible, by which the times for this front to travel the lengths nh and nD are taken as
t1 and t2. This will lead to the formulae

(24)

and for l̄ we will obtain

(25)

Estimates by means of these formulae for the version with ay ∼ az ∼ 0.1 and n = 5 yield t̄1 = 5 × 17 min = 85 min = 1 h 25 min, t̄2 = 5 ×
40 h = 200 h ≈ 8 days and l̄ = √

5 × 3.5 km ≈ 8 km. With ay ∼ az ∼ ax ≈ 0.25 and n = 4, we obtain t̄ ≈ 4 × 5 min = 20 min, t̄2 ≈ 4 × 17 h ≈ 70 h
and l̄ ≈

√
4 × 2 km = 4 km.

These estimates are possibly closer to the truth. Nevertheless, for more confident conclusions, more complete and detailed data from
observations and full-scale measurements are needed.

We will now estimate the characteristics of the process of the fall in the concentrations of pollutant in the slick as it moves downstream.
The initial volume of the pollutant was 100 m3 of liquid. In accordance with this, we will adopt the values Ax0 = Ay0 = 7 m and h0 = 2 m. Then,
by means of formula (7) we will, with ax = 0.25, h = 4 m, Lx1 = D = 500 m, n = 4 and ay = az = 0.25,

For C2, from formula (13) we obtain



S.S. Grigoryan / Journal of Applied Mathematics and Mechanics 73 (2009) 747–753 753

Formula (19) can be presented in the form

(26)

For axk = 1, ay = 0.1 and n = 4, we obtain

(27)

and with L ≈ l we obtain maxC ≈ 0.35C2 instead of maxC (L = l) = C2, which is entirely acceptable considering the inapplicability of asymptotic
formula (26) when L = l and the approximate nature of the formula for C2. For the Harbin site, where L ≈ 400 km, from expression (27) we
obtain, with the above estimates of l ∼ 3–9 km, max C(L = 400)∼C2

√
4/400 = 0.1C2.

For L = 103 km we obtain maxC (L = 103) ≈ 0.002C2. Thus, according to the proposed model, the main dilution of the impurity, of the
order of 10−5, occurs at the end of the second stage of the process, but further “dimention” of the pollutant concentrations as the slick
moves downstream occurs slowly (according to formula (20)), like the very process of “spreading” of the slick (according to formula (22)).

After the pollutant has entered the Amur, at the first and second stages of the start of its motion along the river, its main dilution
will occur, and the polluted volume will increase by a factor of (DA/DS)2hA/hS (the subscripts A and S denote whether the parameters
belong to the Amur or the Songhua), i.e., roughly by a factor of 32 × 2 = 18, so that, for maxC2A, we obtain the estimate maxC2A ≈ maxC2S
(L = 103)/18 ≈ 0.02C2S/18 ≈ 10−3C2C ≈ 2.5 × 10−8C0.

It follows from these estimates that the incident on the Songhua/Amur at the end of 2005 should not have serious consequences for
the Amur, as was indeed the case. Nevertheless, an ecological catastrophe may occur even with low downstream concentrations in large
rivers through the mass asphyxiation of aquatic life in their upper reaches and tributaries.
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